

Explain your answers with neat sketches whenever possible. If not clearly stated, assume that the mean radius of the earth is R = 6371 km if not mentioned.

<u>Assignment 3 – Coordinate Systems</u>

- 1. Express your views about the following statements.
 - a. The reason for numerous coordinate systems in geodesy.
 - b. Deflection of the vertical can be used to convert from natural to geodetic coordinates.
 - c. There are essential elements to define a coordinate system.
 - d. Orthometric height is measured along the ellipsoidal normal at the point.
 - e. The quantities Φ , Λ , and H define the position of the observer with respect to the geoid & the mean rotational axis of the earth.
 - f. When rectangular system is called Average Terrestrial Coordinate System.
 - g. Average Terrestrial Coordinate System and geodetic coordinate systems are the same.
 - h. Observations which define the components of a horizon coordinate system.
- 2. Calculate the coordinates of a station *C* in a local coordinate system *UVW* if the change in rectangular coordinates from *C* to *D* is $\Delta X = 15 \ km$, $\Delta Y = 10 \ km$, and $\Delta Z = 3 \ km$ Also, compute the astronomic azimuth A_{CD} , spatial distance S_{CD} , and zenith angle Z_{CD} if the deflection components at *C* are $\xi = 5^{"}$, and $\eta = 3^{"}$ while the geodetic coordinates of *C* are $\varphi = 26^{\circ} 15'27^{"} N$, and $\lambda = 30^{\circ} 25'12^{"} E$.
- Given that the deflection components ξ, η, N at an arbitrary station P are 15", 10", and 12.5 m, respectively. Calculate the rectangular coordinates of station P if its astronomic coordinates are Φ = 25° 18' 45", Λ = 26° 22'32" and H = 155.425 m.
- 4. If the astronomic coordinates at point 1 are ($\Phi_1=40^{\circ} 40' 10$ ", $\Lambda_1=41^{\circ} 42'20$ " and $H_1=160.50$ m) and the measurements from point 1 to 2 not corrected for the gravity effect are ($S_{12}=110.45$ m, $A_{12}=20^{\circ}$, and $Z_{12}=45^{\circ}$). The deflection components at point 1 are ($\xi_1=15$ ", $\eta_1=9$ " and $N_1=15.50$ m). How can the geodetic coordinates (ϕ_1,λ_1,h_1), Azimuth α_{12} and Zenith distance z_{12} can be calculated?
- 5. Given the geodetic coordinate of two point ($\varphi_A = 30^{\circ}10^{\circ}15^{"}$, $\lambda_A = 33^{\circ}20^{\circ}10^{"}$, $h_A = 110.12$ m) and ($\varphi_B = 32^{\circ}20^{\circ}05^{"}$, $\lambda_B = 35^{\circ}10^{\circ}15^{"}$, $h_B = 120.10$ m). The deflection components at point A are ($\xi_A = 5^{"}$, $\eta_A = 15^{"}$) calculate the astronomic azimuth AB?